If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5q^2-14q=15
We move all terms to the left:
5q^2-14q-(15)=0
a = 5; b = -14; c = -15;
Δ = b2-4ac
Δ = -142-4·5·(-15)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{31}}{2*5}=\frac{14-4\sqrt{31}}{10} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{31}}{2*5}=\frac{14+4\sqrt{31}}{10} $
| (5x+19)+(3x+15)=90 | | 5q^2-14q+15=0 | | 2÷5-1÷2=x÷5 | | 5x+19)+(3x+15)=90 | | (6x+26)=(8x+30) | | 6x2+11x+3=0 | | -6-(-8)=a | | 5/3t=7/9 | | 3d−2=7 | | (7x+5)+(4x+10)=180 | | 9-(-2)=a | | 3c-15=360 | | (2x+7)=(7x-18) | | 4c+20=360 | | 2x-1+3x=6x+14 | | (6x+29)+(2x-9)=180 | | (6x+29)+(2x−9)=180 | | (60+20)r=40r | | (6x+4)+(7x+7)=180 | | 2b-10=12b+20 | | (5x+19)=(3x+21) | | (x+1)^2/3=(9x+1)^1/3 | | d=1/2•9.8•0.38^2 | | d=1/2•9.8•0.38 | | 5x-14+5x=2x+3 | | X^2-2x-35=25-9x | | 2(n-7)=5n-4 | | (2x+23)+(5x−4)=180 | | 37-4x=6x-3 | | r-5=6r+19 | | 222=22-w | | 8(2x-3)=90 |